

Testing of Mechanical Properties

- Compression and flexural testing of cement paste/mortar
- Uniaxial compression test of fresh concrete
- Compression testing of concrete
- Modulus of elasticity
- Uniaxial compressive test of concrete
- Uniaxial tensile test of textile
- Flexural test of textile reinforced concrete composite
- Uniaxial tensile test of rebar/strand

- Pull-out test of reinforcing bars/stands
- Three-point and four-point bending test
- Pre-peak and post-peak flexural fatigue test
- Prestressing of strands
- Abrasion resistance of concrete under water
- Non Destructive testing

Testing of Fresh **Properties**

- Mini Sump Test
- Flow Table Test
- Slump Flow Test
- Marsh Cone Test
- Pressure Bleed/Filter Testibration equipment
- Vane Shear Test
- **Viscosity Test**

- Rheology Test
- Green Strength Study
- Mixing and
- - SCC equipment
- Foam generator
- Puntke Test

Compression and flexural testing of cement paste/mortar

Working Principle

Load controlled testing machine that applies a constant loading rate until failure

Applications

 Characterization of cement paste/mortar, gypsum, etc. at different age

- Compressive strength
- Flexural strength

Compression test setup

Flexural test setup

Controls compression testing machine

Uniaxial compression test of fresh concrete

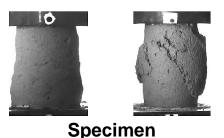
Working Principle

Closed-loop control system that can control variables such as specimen displacement and strain.

Specimen is subjected to monotonic loading until failure

Applications

Characterization of early-age properties of concrete systems


Mechanical properties

Compressive strength at fresh state

ZwickRoell Electromechanical testing machine

Compression testing of concrete

Load controlled testing machine that applies a constant loading rate until failure

Applications

- Design of concrete elements
- Evaluation of strength of an existing concrete structure by performing compressive test on cores

Mechanical properties

Compressive strength

Controls compression testing machine

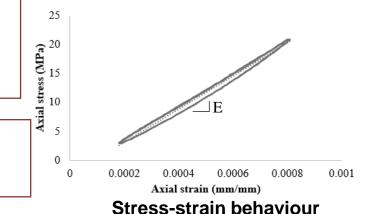
Modulus of elasticity

Working Principle

The load ramp applied in three cycles, between 5% and 40% of expected ultimate compressive load.

Load vs. time and stress vs. strain are recorded by a computer-based data acquisition system.

Applications


 Characterization of concrete of grades ranging from M20 to M100 and high performance concrete at different ages

Mechanical properties

Elastic modulus

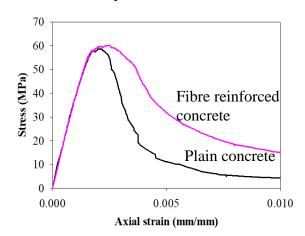
Controls compression testing machine

Uniaxial compressive test of concrete

Working Principle

Closed-loop control system that can control specimen displacement and strain.

Specimen is subjected to monotonic loading by circumferential displacement control


Applications

 Finite element modelling and design of elements made of quasi-brittle materials such as plain concrete, fibre reinforced concrete, masonry blocks, asphalt, gypsum, etc.

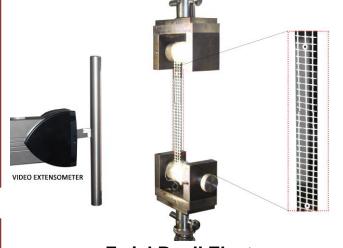
- Elastic modulus and Poisson's ratio
- Compressive strength
- Compressive toughness
- Complete compressive stress-strain curve

MTS servo-hydraulic compression machine

Stress-strain behaviour

Uniaxial tensile test of textile

Working Principle


Closed-loop control system that can control variables such as specimen displacement, and strain.

Video extensometer and axial extensometer are used to study the stress-strain behavior.

Applications

 Design of cement and concrete composites such as textile reinforced concrete under varied temperatures (-10 to 280 deg. C) and under fatigue loading.

- Elastic modulus
- Tensile strength
- Tensile stress-strain curve

ZwickRoell Electromechanical testing machine

Uniaxial tensile test of textile

Working Principle

Closed-loop control system that can control variables such as specimen displacement, and strain.

Video extensometer and axial extensometer are used to study the stress-strain behavior.

Applications

 Design of cement and concrete composites such as textile reinforced concrete under varied temperatures (-10 to 280 deg. C) and under fatigue loading.

- Elastic modulus
- Tensile strength
- Tensile stress-strain curve

ZwickRoell Electromechanical testing machine

Pull-out test of textile yarn in textile reinforced concrete composite

Working Principle

Closed-loop control system that can control variables such as specimen displacement, and strain.

Video extensometer and axial extensometer are used to study the stress-strain behavior.

Applications

 Design of cement and concrete composites such as textile reinforced concrete under varied temperatures (-10 to 280 deg. C) and under fatigue loading.

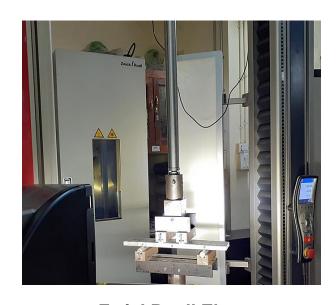
Mechanical properties

Bond strength

ZwickRoell Electromechanical testing machine

Flexural test of textile reinforced concrete composite

Working Principle


Closed-loop control system that can control variables such as specimen displacement, and strain.

Video extensometer and axial extensometer are used to study the stress-strain behavior.

Applications

 Design of cement and concrete composites such as textile reinforced concrete under varied temperatures (-10 to 280 deg. C) and under fatigue loading.

- Flexural strength
- Load-deflection curve

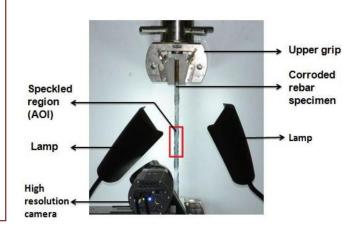
ZwickRoell Electromechanical testing machine

Uniaxial tensile test of rebar

Working Principle

Closed-loop control system that can control variables such as specimen displacement and strain.

The rebar is gripped at both ends and tensile load is applied.


Deformation is monitored using video extensometer

Applications

 Characterization of concrete systems with damaged rebar

- Elastic modulus
- Yield strength
- Breaking strength
- Maximum elongation

MTS servo-hydraulic tension machine

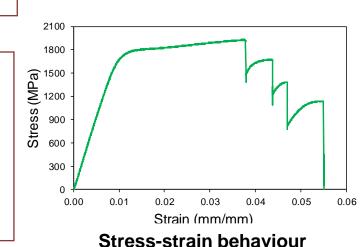
Uniaxial tensile test of strand

Closed-loop control system that can control variables such as specimen displacement, and strain.

The strand is gripped at both ends and tensile load is applied

Applications

Design of prestressed concrete systems


Mechanical properties

- Elastic modulus
- Yield strength
- Breaking strength
- Maximum elongation

MTS servo-hydraulic tension machine

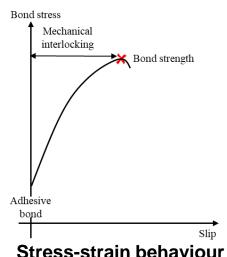
Pull-out test of reinforcing bars

Working Principle

Closed-loop control system that can control variables such as specimen displacement, and strain.


The rebars are gripped at one end and the concrete is pulled apart

Applications


Design of reinforced concrete systems

Mechanical properties

- Bond strength
- Bond stress- slip curve

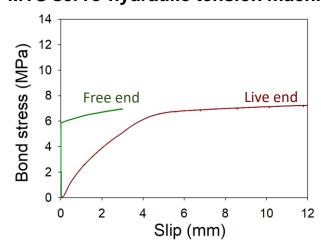
MTS servo-hydraulic tension machine

Pull-out test of prestressing strand

Working Principle

Closed-loop control system that can control variables such as specimen displacement and strain.

The strands are gripped at one end and the concrete is pulled apart


Applications

Design of prestressed concrete systems

- Bond strength
- Bond stress-slip curve

MTS servo-hydraulic tension machine

Stress-slip behaviour

Four-point bending test

Working Principle

Closed-loop control system that can control specimen displacement.

Specimen is subjected to monotonic loading by displacement control.

Controls flexural testing machine

40 30 30 45 kg/m³ 20 25 kg/m³ 10 0 500 1000 1500 2000 2500 3000 Deflection (in µm)

Load displacement behaviour

Applications

 Design of fibre reinforced concrete elements such as pavements and slabson-grade.

- Flexural strength
- Residual flexural strength

Three-point bending test

Working Principle

Closed-loop control system that can control variables such as specimen displacement and crack opening.

Specimen is subjected to monotonic loading at mid-span by CMOD control.

Controls flexural testing machine

24 - M40SF45 20 - M40SF30 M40SF30 M40SF20 M40SF15 M40SF10 M40SF10 M40SF10 M40SF10 M40SF10

Load displacement behaviour

Applications

- Fracture study of advanced concrete materials
- Design of fibre reinforced concrete elements such as industrial floors, tunnel linings, elevated slabs, etc.

- Flexural strength
- Residual flexural strength

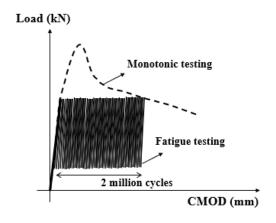
Pre-peak and post-peak flexural fatigue test

Working Principle

Closed-loop control system that can control variables such as specimen displacement, strain and crack opening.

Fatigue cycles are applied by load-control and the displacement is monitored

Applications


- Design of concrete elements such as pavements, industrial floors, bridges, etc. that are subjected to long-term fatigue loading
- Design of steel pipes

Mechanical properties

- Fatigue strength
- Fatigue life

MTS servo-hydraulic compression machine

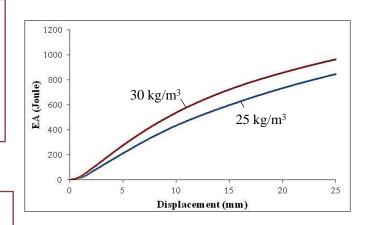
Load-displacement behaviour

Energy absorption test

Working Principle

Closed-loop control system that can control specimen's central deflection.

Specimen is subjected to monotonic loading at center of the square/round panel by displacement control


Controls flexural testing machine

Applications

Design of plain and fibre reinforced concrete shotcrete tunnel linings

Mechanical properties

Energy absorption capacity

Energy absorption-displacement behaviour

Prestressing of strands

Working Principle

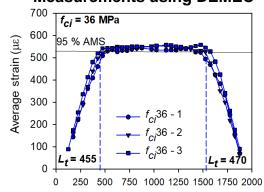
Strand is prestressed using hydraulic jack and prestress is transferred released using stress adjusting system

Strain on the concrete surface is obtained using brass embedded pins and DEMEC gauge

Design of pretensioned concrete

Mechanical properties

- Transmission length
- Effective prestress force
- Prestress loss



Stressing end

Releasing end

Measurements using DEMEC

Distance from end of the member (mm)

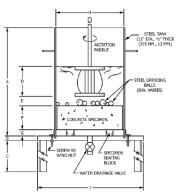
Strain profile on the concrete surface

Abrasion Resistance of Concrete Underwater

Working Principle

Abrasion of concrete surface by abrasive charges (steel balls) suspended in water, simulating the abrasive action of waterborne particles like silt, sand and gravel on the surface of concrete.

Applications


 Design of concrete for hydraulic structures, overlays and impregnated concrete

Mechanical properties

 Hydraulic Abrasion Resistance of Concrete

Test setup

Schematic diagram

Non-Destructive Testing

Rebound Hammer

Moisture Meter

Pendulum Hammer

Ultrasonic Pluse Velocity

Resonant Frequency